The Second Noether Theorem on Time Scales

نویسندگان

  • Agnieszka B. Malinowska
  • Natália Martins
  • Delfim F. M. Torres
چکیده

and Applied Analysis 3 by φ(ε) := L[y+εη] and f(t, ε) := L(t, yσ(t)+εησ(t), yΔ(t)+ εη Δ (t)). If ∂f/∂ε is continuous in ε, uniformly in t, then

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of positive solutions for a second-order p-Laplacian impulsive boundary value problem on time scales

In this paper, we investigate the existence of positive solutions for a second-order multipoint p-Laplacian impulsive boundary value problem on time scales. Using a new fixed point theorem in a cone, sufficient conditions for the existence of at least three positive solutions are established. An illustrative example is also presented.

متن کامل

The Second Euler-Lagrange Equation of Variational Calculus on Time Scales

The fundamental problem of the calculus of variations on time scales concerns the minimization of a deltaintegral over all trajectories satisfying given boundary conditions. In this paper we prove the second Euler-Lagrange necessary optimality condition for optimal trajectories of variational problems on time scales. As an example of application of the main result, we give an alternative and si...

متن کامل

Noether ’ s Theorem on Time Scales ?

We show that for any variational symmetry of the problem of the calculus of variations on time scales there exists a conserved quantity along the respective EulerLagrange extremals.

متن کامل

ar X iv : 0 70 9 . 04 00 v 1 [ m at h . O C ] 4 S ep 2 00 7 Noether ’ s Theorem on Time Scales ∗

We show that for any variational symmetry of the problem of the calculus of variations on time scales there exists a conserved quantity along the respective Euler-Lagrange extremals. Mathematics Subject Classification 2000: 49K05, 39A12.

متن کامل

Noether Symmetries and Integrability in Time-dependent Hamiltonian Mechanics

We consider Noether symmetries within Hamiltonian setting as transformations that preserve Poincaré–Cartan form, i.e., as symmetries of characteristic line bundles of nondegenerate 1-forms. In the case when the Poincaré–Cartan form is contact, the explicit expression for the symmetries in the inverse Noether theorem is given. As examples, we consider natural mechanical systems, in particular th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014